Wavelet block thresholding for samples with random design: a minimax approach under the Lp risk

نویسنده

  • Christophe Chesneau
چکیده

In recent years, wavelet thresholding procedures have been widely applied to the field of nonparametric function estimation. They excel in the areas of spatial adaptivity, computational efficiency and asymptotic optimality. Among the various thresholding techniques studied in the literature, there are the term-byterm thresholding (hard, soft, . . . ) initially developed by Donoho and Johnstone (1995) and the block thresholding (global, BlockShrink, . . . ) introduced by Kerkyacharian et al. (1996) and Hall et al. (1999). Several recent works demonstrated that the block thresholding methods can enjoy better theoretical properties than the conventional term-by-term thresholding methods. This superiority has been proved for various statistical models via the minimax approach under the L risk. See, for instance, Cai (1999) and Cavalier and Tsybakov (2001) for the Gaussian sequence model, Cai and Chicken (2005) for the density estimation, Chicken (2003) for the regression model with nonequispaced samples and Chicken (2007) for the regression model with random uniform design. This paper presents an extension of a result established by Chicken (2007). We prove that a generalized version of the BlockShrink construction achieves better rates of convergence than the conventional term-by-term thresholding estimators.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process

We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...

متن کامل

Block thresholding for a density estimation problem with a change-point

We consider a density estimation problem with a change-point. We develop an adaptive wavelet estimator constructed from a block thresholding rule. Adopting the minimax point of view under the Lp risk (with p ≥ 1) over Besov balls, we prove that it is near optimal.

متن کامل

Wavelet estimation for samples with random uniform design

We show that for nonparametric regression if the samples have random uniform design, the wavelet method with universal thresholding can be applied directly to the samples as if they were equispaced. The resulting estimator achieves within a logarithmic factor from the minimax rate of convergence over a family of H older classes. Simulation result is also discussed. c © 1999 Elsevier Science B....

متن کامل

A Data-Driven Block Thresholding Approach to Wavelet Estimation

A data-driven block thresholding procedure for wavelet regression is proposed and its theoretical and numerical properties are investigated. The procedure empirically chooses the block size and threshold level at each resolution level by minimizing Stein’s unbiased risk estimate. The estimator is sharp adaptive over a class of Besov bodies and achieves simultaneously within a small constant fac...

متن کامل

Stein block thresholding for wavelet-based image deconvolution

Abstract: In this paper, we propose a fast image deconvolution algorithm that combines adaptive block thresholding and Vaguelet-Wavelet Decomposition. The approach consists in first denoising the observed image using a wavelet-domain Stein block thresholding, and then inverting the convolution operator in the Fourier domain. Our main theoretical result investigates the minimax rates over Besov ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008